Self-similar semi-analytical relativistic MHD jet model: a first step towards a more comprehensive jet modelling for data fitting

Chiara Ceccobello
* 1 and Sera Markoff 1

¹Astronomical Institute Anton Pannekoek (AI PANNEKOEK) – PO Box 94249, 1090 GE Amsterdam, Netherlands

Abstract

Jets are ubiquitous and reveal themselves at different scales and redshifts, showing an extreme diversity in energetics, shapes and emission, in objects such as X-ray binaries (XRBs) and active galactic nuclei (AGN), as well as young stellar objects (YSOs) and gamma-ray bursts (GRBs). Observations suggest that jets are an energetically important component, not only to the systems that host them, but also their larger surrounding environments, where they deposit a significant amount of energy that has been extracted from the accretion flow. Therefore, understanding the mechanisms responsible for the formation and emission of jets is a fundamental problem to be addressed. In this talk, I will present a new integration scheme to solve relativistic MHD equations describing collimated, relativistic outflows. For the first time, jet solutions can be reconstructed from the disk mid-plane to downstream of the modified magnetosonic fast point, where there are hints of a recollimation shock. These solutions show a range of jet dynamics (jet Lorentz factor $_{\sim}$ 1-10) and geometric properties (i.e. shock height $_{\sim}$ 10^3 - 10^7 Rg), which makes our model suitable for application to many different systems in which relativistic jets are launched.

Keywords: magnetohydrodynamics, jets, XRBs, AGN

^{*}Speaker